Monte Carlo Simulation for Radiotherapy in a Distributed Computing Environment

نویسندگان

  • J. T. Moscicki
  • S. Guatelli
  • M. G. Pia
  • M. Piergentili
چکیده

We show how nowadays it is possible to achieve the goal of accuracy and fast computation response in radiotherapic dosimetry using Monte Carlo methods, together with a distributed computing model. Monte Carlo methods have never been used in clinical practice because, even if they are more accurate than available commercial software, the calculation time needed to accumulate sufficient statistics is too long for a realistic use in radiotherapic treatment. We present a complete, fully functional prototype dosimetric system for radiotherapy, integrating various components based on HEP software systems: a Geant4-based simulation, an AIDA-based dosimetric analysis, a web-based user interface, and distributed processing either on a local computing farm or on geographically spread nodes. The performance of the dosimetric system has been studied in three execution modes: sequential on a single dedicated machine, parallel on a dedicated computing farm, on a grid test-bed. An intermediate software layer, the DIANE system, makes the three execution modes completely transparent to the user, allowing to use the same code in any of the three configurations. Thanks to the integration in a grid environment, any hospital, even small ones or in less wealthy countries, that could not afford the high costs of commercial treatment planning software, may get the chance of using advanced software oncological therapy, based on Monte Carlo methods, by accessing distributed computing resources, shared with other hospitals and institutes belonging to the same virtual organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Simulation of a Linear Accelerator and Electron Beam Parameters Used in Radiotherapy

Introduction: In recent decades, several Monte Carlo codes have been introduced for research and medical applications. These methods provide both accurate and detailed calculation of particle transport from linear accelerators. The main drawback of Monte Carlo techniques is the extremely long computing time that is required in order to obtain a dose distribution with good statistical accuracy. ...

متن کامل

Two and Three Dimensional Monte Carlo Simulation of Magnetite Nanoparticle Based Ferrofluids

We have simulated a magnetite nanoparticle based ferrofluid using Monte Carlo method. Two and three dimensional Monte Carlo simulations have been done using parallel computing technique. The aggregation and rearrangement of nanoparticles embedded in a liquid carrier have been studied in various particle volume fractions. Our simulation results are in complete agreement with the reported experim...

متن کامل

Investigation and Comparison of Metal Nanoparticles on Dose Enhancement Effect in Radiotherapy Using Monte Carlo Simulation Method

Introduction: The main goal of radiation therapy is destroying the tumor so that the surrounded healthy tissues have received the least amount of radiation at the same time. In recent years, the use of nanoparticles has received much attention due to the increasing effects they can have on the deposited dose into the cancer cells. The aim of this study was to investigate the effects of nanopart...

متن کامل

Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...

متن کامل

The comparison between 6 MV Primus LINAC simulation output using EGSnrc and commissioning data

Introduction: Monte Carlo calculation method is considered to be the most accurate method for dose calculation in radiotherapy. The purpose of this research is comparison between 6 MV Primus LINAC simulation output with commissioning data using EGSnrc and build a Monte Carlo geometry of 6 MV Primus LINAC as realistically as possible. The BEAMnrc and DOSXYZnrc (EGSnrc package) M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004